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1. Introduction

You have just been hired by the management of a local television station

to assist them in evaluating the candidates for a soon-to-be-filled position

as station weatherman. Each of the candidates has made a sequence of prob-

ability forecasts of the event "rain"1, announcing the probability pj on

the j th trial of the sequence. Before making the next forecast the can-

didate learns the value of yj 3 which is 1 if "rain" occurs, and is 0

otherwise. The basic data available to you for each candidate is a set of

pairs {(pity i): J=1,2,..., n), and from this information you are to assess

the candidates, and possibly determine which is the best probability assessor.

The purpose of this paper is to provide a probabilistic framework into which

to set this problem of assessing probability assessors.

In the weatherman problem, we have taken care to ensure that each fore-

cast is made in light of full information of the outcome of previous forecasts,

i.e., with feedback. From a subjective probability perspective the announced

probability forecasts form a sequence of conditional probabilities in which

each term expresses the candidate's degree of belief given all of the inf or-

mation available at the time of the forecast. The probability distribution

of tho'se conditional probabilities, found by letting the number of trials n-

is of central concern in this paper.

The notion of calibration concerns the relationship between the probability

distribution of conditional probabilities and the long-run frequencies of rain

given a particular probabilistic assessment value. Roughly speaking a prob-

ability assessor is said to be well-calibrated if, for those trials on which he

forecasts the probability x , the long-run frequency of rain is x . Pratt (1962)

and David (1981 ) show that a probability assessor who is coherent in the sense
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of de Finetti (1937) must be well-calibrated almost surely. In Section 2, we make more

formal this notion of calibration, and, in Section 3, we show that same well-

calibrated forecasters are clearly superior to others. We suggest a formal

sense in which a given well-calibrated forecaster can be "more refined" and

thus "better" than another. Then in Section 4, we demonstrate the link

between the concept of refinement and that of sufficiency in the comparison

of experiments. This link leads in Section 5 to a rather simple condition

for determining whether one well-calibrated forecaster is more refined than

another. In Section 6, this condition is exploited in order to determine

a "least-refined" forecaster.

Calibration and refinement, as presented in this paper, refer only to

the full probability distribution of the assessor's conditional forecasts.

However, in the television station example which began this section, and

elsewhere in statistical practice, we do not know either this distribution

or the long-run frequencies of rain. All that we get to gee is a finite

set of forecasts and the associated indicators of whether or not rain occurred,

i.e., {(pj, yj): j - 1,2,..., n). In Section 7, we briefly review some

scoring rules suggested for such sample situations, and indicate how they

relate to the probabilistic concepts of calibration and refinement.

For the forecasting problems considered in the first six sections of

the paper there are only two possible outcomes, rain or no rain. We take

care in these sections to preserve the orientation of outcomes and work

only with the forecasters' assessments of the probability of rain. Kadane

and Lichtenstein (1981) show that the loss of orientation leads to the in-

ability to recalibrate a forecaster's assessments. Finally, in Section 8

we discuss extensions of the calibration and refinement structure to forecasting
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problems with s>2 outcomes. In these problems, we require the ordered

vector of assessed probabilities for the s possible outcomes and the

associated indicator vector which summarizes which outcome actually occurs.

2. Well-calibrated forecasters

Consider a weather forecaster who day after day must specify his subjective

probability x that there will be at least a certain amount of rain at some

given location. For simplicity, we shall refer to the occurrence of this

well-specified event as "rain." Thus, we may say simply that, at the beginning

of each day, the forecaster must specify his probability of rain, and that at

the end of. each day it is observed whether or not rain actually did occur.

We shall refer to the probability x specified by the forecaster on

any particular day as his prediction. Both for realism and simplicity, we

assume that the prediction x is restricted to a finite set of values

G-x0<xl<.. .c.l .V (In many weather forecasts, k-10 and xjmi/1O.) We

ass-m that the forecaster's predictions can be observed over a large number

of days, and we shall let v(x) denote the probability function (or frequency

function) of his predictions over those days. Thus, we can think of v(x)

either as the probability that the forecaster's prediction on a randomly chosen

day will be x, or in the frequency sense as the proportion of days on which

his prediction is x . We shall let X denote the set of possible predictions

{x 0,xi,...sx1kl and let Z. + denote the subset of X containing only those

points for which v(x)> 0.

To evaluate the forecaster, we must compare the actual occurrences of

rain or no rain with his predictions, and for xcZ we shall let p(x) denote

the conditional probability of rain given that the prediction is x .The
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forecaster is said to be well-calibrated (see, e.g., Dawid, 1981 ) if

p(x) - x for all values of xcZ • In words, the forecaster is well-

calibrated if among all those days for which the prediction is x , the

proportion of rainy days is also x , and this is true for every value

of x . In meteorology, the criterion of calibration is referred to as

validity (Miller, 1962), or reliability (Murphy, 1973), and the well-

calibrated forecaster is said to be perfectly reliable.

For obvious reasons, being well-calibrated is usually regarded as a

desirable characteristic of a forecaster. It has been pointed out elsewhere

(DeGroot, 1979), however, that it is typically easy for any forecaster to

make himself well-calibrated by specifying predictions that do not represent

his subjective probabilities and in which he does not believe. Furthermore,

as Dawid (1980 ) has stated, even if the forecaster's true probabilities make

him well-calibrated, "this does not necessarily mean that they are 'accurate'

in all respects; and even if they are accurate, they may not be of much

substantive value if the forecaster is a poor meteorologist." Thus, a well-

calibrated forecaster is not necessarily a good forecaster, and we shall now

consider the problem of comparing well-calibrated forecasters.

3. Refinement

In this section, we shall restrict attention to well-calibrated fore-

casters. Let u denote the relative frequency of days on whizh it rains. In

f7f~~1

' ' . .. . .- | | 1 1 = . _ , , - . .. . . ... .. ... . ..
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meteorology, Pi is sometimes called the climatological probability. For

any well-calibrated forecaster, it must be true that

Z XV(x) = i(3.1)

xCZ
Throughout this paper we shall assume that 0 < P < 1

In order to emphasize the possible differences that can exist among

such forecasters, we shall begin by considering two extreme types. Suppose

that iieZ .Then the forecaster A 0whose prediction each day is pi will

be well-calibrated, although his predictions are completely useless for any

purpose whatsoever. The predictions of A 0are characterized by the de-

generate probability function

VM
A 0

(3.2)

vA W.) 0 for x#

0

00
Next, consider a well-calibrated forecaster A 0whose predictions are

characterized by the following probability function:

0 (l)
A

V A (0 -j (3.3)

V 0(xW - 0 for x 0 0,1.

it can be seen from (3.3) that the only probabilities of rain that forecaster

A 0ever specifies are 0 and 1 , and since A 0is well-calibrated, his

predictions are always correct. We shall refer to Aas the most-refined

forecaster. In meteorology, A0is said to exhibit zero sharpness, and A 0

to exhibit perfect sharpness (Sanders, 1963).
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It is clear from A0  and A0  that quite different types of behavior

are possible among well-calibrated forecasters, ranging from useless to

perfect predictions. We shall now describe a concept that yields a partial

ordering on the class of all well-calibrated forecasters and justifies our

referring to A0  and A0  as the least and the most refined members of this

class.

A stochastic transformation h(xjy) is a function defined on ZxZ such

that

h(xly) >0'jfor xeX and yEZ
(3.4)

Z h(xly) = 1 for yEZ.

xCZ

Now consider two arbitrary-well-calibrated forecasters whose predictions are

characterized by the probability functions vA(x) and vB(x) . We say that

A is at least as refined as B if there exists a stochastic transformation

h such that the following relations are satisfied:

Z h(xly)vA(y)= vB(x) for xcZ , (3.5)
y.Z

E h(xly)yvA(y)" xvB(x) for xZ . (3.6)

yeZ

By subtracting (3.6) from (3.5) we get

Z h(xly)(l-y) vA(y) - (1-x) VB (x) for xEZ, (3.7)
ycZ

which adds a touch of symmetry when (3.7) is paired with (3.6).

Together, the relations (3.5) and (3.6),or (3.6) and (3.7), state that

if we know the predictions of forecaster A , then we can simulate the pre-

dictions of forecaster B by using an auxiliary randomization based on the
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stochastic transformation h as follows: If A makes the prediction

y on a particular day, then we simulate a prediction x in accordance

with the conditional probability distribution h(xjy). The prediction

x will then have exactly the same probabilistic properties as the pre-

dictions of forecaster B . The relation (3.5) guarantees that we will

obtain each prediction x with the same frequency vB(x) that B does,

and the relation (3.6) guarantees that our predictions will still be well-

calibrated.

To see that any forecaster A is at least as refined as the least-

refined forecaster A0 , let us define the stochastic transformation h

as follows :

h(ljy) 1 for yEZ , (3.8)

h(xly) = 0 for x #

Then it follows from (3.1) that (3.5) and (3.6) are satisfied when vB is

replaced by v as defined by (3.2).VA0

Similarly, to see that the most refined forecaster A is at least as

refined as any other forecaster B , let us define the stochastic trans-

formation h as follows.

h(xi1l) xvB(x) for X
(3.9)

h(xIO) - W for x .X

Since B is well-calibrated, it follows from (3.1) that the function h

defined in (3.9) has the properties required of a stochastic transformation.

The definition of h(xly) for y 0 0,1 is irrelevant since forecaster A0

never makes a prediction other than 0 or 1 . The relations (3.5) and (3.6)

will now be satisfied when vA is replaced by v 0 as defined by (3.3).
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Since the relationship among .well-calibrated forecasters defined by

the concept of one being at least as refined as another is both reflexive

and transitive, this relationship induces a partial ordering among those

forecasters. We do not obtain a total ordering, however, as the next

example shows.

Suppose that A and B are well-calibrated forecasters characterized

by the following probability functions:

F.1 for x = 0
(A W = 8 for x = .5, (3.10)

. for x - ,

and

v(X) = . 5 for x = .1, (3.11)
B5 for x - .9.

Here U = .5

In this example, A is not at least as refined as B . To see this,

suppose on the contrary that there were a stochastic transformation h(xly)

that satisfied (3.5) and (3.6), and let

a - h(.lO), b - h(.11.5), and c = h(.ll) . (3.12)

Then for x - .1, the relations (3.5) and (3.6) become

(.l)a + (.8)b + (.l)c = .5 (3.13)

(.4)b + (.l)c = .05

The two equations in (3.13) imply that a-c-4 , which is an impossibility

since both 0 < a < 1 and 0 < c < 1 .

On the other hand, neither is B at least as refined as A . To see

this, we need only note that on 20 percent of the days, A makes predictions

of rain or no rain that are certain to be correct (because A is well-calibrated)
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whereas B never makes correct predictions with certainty. Thus, in

this example neither A nor B is at least as refined as the other.

4. Sufficiency

In Section 2 we characterized the predictive behavior of any fore-

caster, regardless of whether or not he was well-calibrated, by the

functions v(x) and p(x) . In effect, we represented the joint dis-

tribution of the prediction x and the indicator of rain in terms of the

marginal distribution of x and the conditional probability p(x) of

rain given the prediction x . But it is also useful at times to use an

alternative factorization of this joint distribution (see, e.g., Lindley,

Tversky, and Brown, 1979, and Lindley, 1981).

Let 9 denote the indicator of rain, so e = 1 if rain occurs on

a particular day and 9 - 0 otherwise, and for any given forecaster let

f(xlj) denote the conditional probability function of the forecaster's

predictions given 9 . In other words, for 9 - 1 , f(xj9) represents the

frequency function of the forecaster's predictions on days when rain actually

occurs. It follows that for xcZ ,

Pf(xl1) p P(x)v(x) (4.1)

(l-i)f1xIO) = [l-P(x)lv(x) (4.2)

It follows from (4.1) that the probability functions f(xS) for 6=0

and 0-1 characterize the forecaster's predictive behavior.

Now consider two forecasters A and B characterized by the functions

fA(xle) and fB (xie) . Following the original work of Blackwell (1951, 1953)

on the comparison of experiments, we say that forecaster A is sufficient

for forecaster B if there exists a stochastic transformation h(xjy) such that
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E h(xly)fA(yle) = fB(xlB) for xeZ and 8=0,1 (4.3)
YE Z

(see, e.g., DeGroot, 1970, Sec. 14.17). The interpretation of (4.3) is

similar to that given in Section 3: forecaster A is sufficient for fore-

caster B if we can simulate the predictions of B from the predictions of

A by using an auxiliary randomization based on the stochastic transformation h

As before, the relationship of sufficiency induces a partial ordering

among all forecasters. Since we have applied this relationship to all

forecasters, however, and not just to those who are well-calibrated, it is

not necessarily true that if A is sufficient for B then A is at least

as "good" a forecaster as B . For example, suppose that A never makes

a prediction other than x.0 or x-l , but that he is always wrong about

whether or not it is going to rain. Then A is sufficient for every other

forecaster, even though he is the worst possible forecaster. Of

course, if we knew that A was always wrong, his predictions would be just

as useful to us as those of a forecaster who was always correct.

Theorem 1. Consider two forecasters A and B whose predictive be-

havior is characterized by the functions vA(X), PA(X) , vB(X) , and PB(x)

Then forecaster A is sufficient for forecaster B if and only if there

exists a stochastic transformation h such that the following relations are

satisfied:

E h(xly)vA(y) = vB(x) for xeZ , (4.4)
yEz

Z h(xlY)pA(Y)vA(y)  OB(x)vB(x) for xZ . (4.5)
yCZ



Proof. Consider any fixed value xcZ .It follows from (4.1) that

for 6-1 , the relation (4.3) is the same as (4.5). Furthermore, it

follows from (4.2) that for 6-0 , the relation (4.3) is the same as

the relation

E y xy)1- A (1VA()-1P B () BW(46

which, in view of (4.5), is equivalent to (4.4). a

Recall now that a forecaster is well-calibrated if p A (x - x for

all xele . The following result follows immediately in the light of

relations (3.5) and (3.6).

Theorem 2. Consider two well-calibrated forecasters A and B

Then forecaster A is at least as refined as forecaster B if and only

if forecaster A is sufficient for forecaster B

5. Conditions for sufficiency

In this section we shall again consider two well-calibrated forecasters

A and B . In order to determine whether or not A is sufficient for B

based on the discussion in the previous sections, it is necessary to determine

whether or not there exists a stochastic transformation that satisfies either

the relations (3.5) and (3.6) or the relations (4.3). Attempts to establish

the existence or non-existence of such a stochastic transformation can be

frustrating and fruitless. Fortunately, Blackwell and Girshick (1954) and

Bradt and Karlin (1956) have provided some direct methods for determining

whether or not A is sufficient for B that eliminate the necessity of

having to consider stochastic transformations.
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For any forecaster, A , let

aA(X) = fA(xll) + fA(x1O) for xcZ , (5.1)

and for 0 < t < 1 , let WA(t) denote the subset of points in Z such
_ A

that fA(xll) < t aA (x) Furthermore, let

FA(t) ZM aA x) for 0 < t < 1 (5.2)A -' -A
A

and t

CA(t) = f FA(U)du for 0 < t < 1 . (5.3)
0

Then, as demonstrated in Theorem 12.4.1 of Blickwell. and Girshick (1954),

forecaster A is sufficient for forecaster B if and only if CA(t) > CB(t)

for all t in the interval 0 < t < 1

A brief heuristic interpretation of this result is as follows; Suppose

that the parameter e has prior probabilities given by Pr(8-1)-Pr(6-0)-.

Then liaA(x) is the marginal distribution of x for forecaster A .

Furthermore, if we let n (X) denote the posterior probability Pr(8-lx)

for forecaster A , then PA (t) denotes the set of values of x for which

WA x) < t . It can now be seen from (5.2) that FA(t) is the distribution

function of the posterior probability iA(X) for forecaster A . For an

informative forecaster, the values of wA(x) will tend to be concentrated

near 0 and 1 , and away from their mean value E A[A (x)] - . The con-

dition that CA(t) > CB(t) for all t in the interval 0 < t < 1 is

equivalent to the condition that EA{(7A(x)]} > EB {CP( (x)]) for every

continuous convex function CP. In this sense, the condition expresses the

notion that the probability distribution of nA (x) is more spread out from

than the probability distribution of wtB(x)

i , .. . . . . . . . . . . .i I l , . . .
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We are now ready to establish the main result of this section. Recall

that the set X comprises the points x 0 < x1 < ... < x k

Theorem 3. Consider two well-calibrated forecasters A and B

Then forecaster A is sufficient for forecaster B if and only if the

following inequalities are satisfied:

j-1

izO (xj-xi)[VA(xi)-VB(xi)] > 0 for j=l,..., k - 1 . (5.4)

Proof. Since both A and B are well-calibrated, it follows from

(4.1) and (4.2) that

fA (xll)- f B ( x l )  
(x/u)OLA(x) a B(X) (x/O) + [(l-x)/(l-P)]

whenever aA(x) and aB (x) are non-zero. Even if either aA(x) or

a B(x) is zero for some xeZ , without loss of generality we still may

define (5.5) to be satisfied. Next, for 0 < t < 1 and xeZ , define

s(t,x) - _ (5.6)

Then both the sets .a(t) and -I(t) contain precisely those points x&%A B
for which s(t,x)>O . Since the sets d (t) and -' (t) are identical, we

A B

shall denote this common set simply by A(t)

From (5.2) and (5.3) we can write
t

C A(t) 0 a A (x)]du

For each xc:V, aA(x) contributes to the integral over a certain set of

u-values of length t-f(xIl)/aA(x). Thus we can re-express CA(t) as

CA(t) " Z [taA(x) - fA(Xll)] • (5.7)
Xct)

Next, using (4.1) and (4.2) and the fact that A is well-calibrated, we can

rewrite (5.7) as follows:
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C A(t) E E s(t,x)vA(x) (5.8)
xa(t)

Furthermore, if we rewrite s(t,x) , as given by (5.6), in the form

s(t,x) = ( {t - [tl+(1-t)(-J)]x} , (5.9)

then it can be seen that P(t) contains precisely these points xEX for

which the quantity inside braces in (5.9) is positive. Thus, C A(t) can

be erpressed as follows:

1 +
A (0 { tl--[t+A(l-t) (x-E) W (5.10)

where, as usual, the notation (m)+  denotes the positive part of the

quantity m .

For forecaster B , the function C B(t) is also given by (5.10) with

v A(x) replaced by vB(X) . Let

LA(t) - P(1-) CAt) (5.11)

and let L(t) be defined similarly. Then it follows from Theorem 12.4.1 of

Blackwell and Girshick (1954), as cited earlier, that forecaster A is

sufficient for forecaster B if and only if LA(t) > LB(t) for all t in

the interval 0 < t -< I .

Corresponding to the points 0 < x0 < x1 <...< xk < 1 in X , let the

points 0 < t0 < t1 <... < tk < 1 be defined by the relations

t i - (tj i+(l-t )(l-u)lx - 0 for j - 0,1,..., k . (5.12)

Then both L A(t) and L B(t) are continuous, piecewise linear functions over

the interval 0 < t < 1 with LA(O) m 1.(0) - 0 and LA(l) - LB(l) = 1 , and
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with vertices at the points top tl,..., tk . Furthermore, L A(t 0

LB(tO) 0 and, for j ,..., k

LA(t ) J-I
Al)(-ti) E (xj-xi)vA(xi) , (5.13)

with an analogous expression for forecaster B

Finally, we note that when J-k , the right-hand side of (5.13) can

be reduced as follows by using (3.1):

k-i
Z (xk-xi)vA(xi) - xk[1-vA(xk)] - [U-xkvA(xk)] (5.14)
i=0

-xk- J

Thus, LA(tk) - LB(tk )  We have now established that forecaster A is

sufficient for forecaster B if and only if LA(tj)-! LB(tj) for J-1,..., k-I

It follows from (5.13) that these k-i inequalities are equivalent to the

k-l inequalities (5.4). 0

We make use of this theorem in the next section.

6. The least-refined, well-calibrated forecaster

In Section 3, we required that vec in order to ensure that the least-

refined forecaster who is well-calibrated will always announce u as his

forecast. Suppose now that UJX , and let xL  and xU be the pair of

adjacent values in X just bracketing u , i.e., xL < v < xu . Then let

A' be a well-calibrated forecaster characterized by the probability function:
0

VA"(X) - (XU-U)/(XU-XL) (6.1)
0

V A,(x) a Ofor xI#XU or xL
0
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It can be seen from (6.1) that A; concentrates his forecasts as

closely as possible to p given the permissible forecast values. Thus,

there is an intuitive sense in which A' is not as refined as another
0

forecaster who spreads out his probabilities over at least some of the

other values of x . We make this notion precise in the following

theorem.

Theorem 4. The well-calibrated forecaster A; , whose probability

function vA.(x) is given by (6.1), is least refined among all other well-
0

calibrated forecasters.

Proof. Consider any other well-calibrated forecaster A . Then, from

Theorem 2, A is at least as refined as At if and only if A is sufficietrt

for A' , and, from Theorem 3, this is true if and only if

J-1
E (x -x )(V (x0)-V for J-l,2,..., k-l (6.2)i-a i A AA xvA -- '

To verify (6.2), we note that for J-l,..., L

j-1 j-1
z (x -x )[v (x )-V A (xi)] E (x -x ) A(xi) (6.3)
ii j i A . (6.3)

which clearly is nonnegative since xj > xi and vA (x) is a probability

function. For J-U , recalling that U - L+l , we have

L
iZ0(XU-x i ) [vA (xi)-VA 0 i 1
i-a0

L
S(XU-xi)vA(xi) - (XU-xL)VA,(XL) (6.4)

L
E (xU-xi)vA(xi) - (Xu-i) ,

i-a
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where the final expression follows from (6.1). Since A is well-calibrated,

we can now use (3.1) to rewrite the expression following the final equality

sign in (6.4) as follows:

L k
z (xu-xi)vA(xi) - E (XU-xi)vA(xi)

i=o i=o

(6.5)
k

-_ £xi-xU)vA(Xi ) > 0.
i=U

Similarly, for jU+1,..., k , the left-hand side of expression (6.2) equals

k
E (xi-xj)vA(xi ) > 0 . a
i=J

The use of Theorem 3 is critical to the preceding proof, for otherwise

we would need to construct the actual stochastic transformation h(xly)

going from VA to VAtt simultaneously ensuring that the calibration con-
0

dition holds. We have found this to be a nontrivial task.

7. Scoring rules for assessment

In the televisio station example introduced in Section 1, we get to see

a finite set of forecasts and the associated indicators of whether or not rain

occurred, i.e., {(pj, yj): j - 1,2,..., n). Several authors have suggested

scoring rules to be used to assess probability assessors in such situations.

Here we relate some of these to the probabilistic concepts of calibration and

refinement.

One of the earliest scoring rule proposals suggested in the context of

meteorological forecasts is the "Brier Score",

... L
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1 n J)2

BS -n (p Yj (7.1)B n J-i

which the forecaster is to attempt to minimize (Brier, 1950). In the case

of binary outcomes (rain, no rain), Winkler (1967) notes that the Brier Score

is equivalent to the general quadratic scoring rule proposed by de Finetti

(1965), designed to oblige the forecaster "to express his true feelings"

(de Finetti, 1962).

Other general classes of "strictly proper" scoring rules include

Good's (1952) logarithmic scoring rule and the spherical scoring rule (see

Stal von Holstein 1970, and Savage 1971).

If we let ni equal the number of days out of n on which the fore-

caster predicts rain with probability xi , and ri the number of these

n i days on which it actually does rain, we can rewrite the Brier Score of

(7.1) as

k r 2 1 k r r
BS . O ni(x ) + - n (1 (7.2)

or as
oasBn 1 i i r 2 r_ r--I k ni r)

S- n(x - + (1 - n -) , (7.3)in n n iO-

k
where E r i - r . Tukey,' Mosteller, and Fienberg (1965) suggest a variant

1-0
of (7.2) which essentially allows the two components on the right-hand side

to be given different weights.

To understand how the components of the Brier Score relate to the con-

cepts discussed here we let a-*"  in such a manner that r i/n i  P(x i ) and

n i/n - v(xi) . Then

I I
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lim -- P(x )V(x ) (7.4)
n-- 1 i i

and 2

ri 2
lir P (xi)v(xi) (7.5)
n--m  I

Any sampling scheme of trials with these limiting properties suffices for

our purposes. Thus, from (7.2) we have

BS - lim BSn

k 2 k
- v(x i ) [x i - (xi)] + E V(xi )P(x)[l - P(x)] • (7.6)

i-0 i-o

The first term on the right-hand side of (7.6) is the weighted mean

square difference between the forecasted probability xi and the frequency

of rain P(xi) . As such it is a measure of calibration. If the forecaster

is well-calibrated, this term equals zero.

The second term on the right-hand side of (7.6) measures the dispersion

of the results of the forecaster's predictions. As such it rewards the fore-

caster for spreading his predictions as much as possible, and thus is a measure

of the forecaster's refinement. The following theorem shows that there is a

direct relationship between this term and the concepts of refinement and

sufficiency presented in Sections 3 and 4.

Theorem 5. If forecaster A is sufficient for forecaster B , then

E VA(X)A(X) - A(X)] Z V B(X)PB(x)[l - Bx)] (7.7)
xcZ xB

Proof: Since A is sufficient for B , from (4.5) we have
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E 0B(X)VB = B ( h(xlY)pA(Y)VA(y)
x x y

= E [- h(xly)I PA(Y)VA(y) (7.8)
y x

E P PA(Y)VA(Y)
y

Next, by applying both (4.4) and (4.5) we have

2
[E h(xly)pA(Y)vA(y)l

vB(x)PB(x) = Z h(xl y)vA(y)

y

- [E h(xly)vA(y)] [Z h(xly)vA(y) PA(Y) 2

y y E h(xly,)vA y
y

< h(xlY)VA(y)] [ h(xy)vA(y) 2

y y Z h(xy ')vA(y' )
y

- r h(xlY)vA(Y)p2(y) (7.9)

y

where the inequality is a special case of Jensen's inequality. Suning (7.9)

over x now yields

Ev(x)p2 (x) < E E h(xly)vA(Y) 2 (y)
B B A Ax x y

- Ez~xy 2
M E (xly)lv A(y)PA(y)

y x
2EvA(Y)A(y )  (7.10)

y

Finally, combining (7.8) and (7.10) yields the inequality (7.7). U
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We recall from Section 5 that forecaster A is sufficient for forecaster

B if and only if C A(02 CB(t) , where C A(t) is defined by (5.3) , and

that this condition is equivalent to

E AE{C [[ (A( x ) x] > E B{0[B)] B (7.11)

for every continuous convex function c . Theorem 5 is,in effect,a special

case of this equivalence. From (7.11) we can construct a class of generalized

limiting scoring rules that replace the second term of (7.6) by

Z v(x)CD[p(x)]. (7.12)
xCZ

The actual assessment of probability assessors based on a finite set

of forecasts requires a careful description of the stochastic mechanisms

associated with the production of predictions for the forecasters being

compared. We shall present such a description in a separate paper.

8. Multivariate forecasts.

In the preceding sections we have considered events with s = 2 possible

outcomes (e.g., rain, no rain). Yet climatological forecasting often involves

s > 2 outcomes (e.g., rain, snow, and neither rain nor snow, or a set of

temperature ranges). In such situations the probability assessor specifies

a vector of probabilities x , restricted to a finite set of values

lying in the (s-l)-dimensional simplex. If the conditional probabilities of

the s outcomes given the prediction x is represented in vector form by

p(x) , then the multivariate forecaster is well-calibrated if p(x) - x for

all xeZ. Note that this well-calibrated multivariate forecaster is also
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well-calibrated, in the sense of Section 2, for each binary problem formed

by combining the s outcomes into two groups; however, a forecaster who

is "marginally" well-calibrated for predicting "rain" or "no rain" may no

longer be well-calibrated when "no rain" is divided into two or more possible

outcomes.

More formally, let x - (xl,..., x ) and p(x) = [p(x),..., p (x).
-s 1

Furthermore, let J= (Ii,..., Ik} represent a partition of the set

{l,..., s) into k nonempty, mutually exclusive, and exhaustive sets

Il,... I k * Then a forecaster is said to be marginally well-calibrated

with respect to the partition J if

P ix) E xi for J - 1,..., k and xcZ. (8.1)
iej icIj

Similarly, we can develop the notion of conditionally well-calibrated

forecasters. Consider again the problem treated in Sections 2-7, in which

s - 2 and the forecaster simply specifies his probability x of rain. The

forecaster may be well-calibrated for some, but not all, values of x . In

other words, it may be true that p(x) - x when x belongs to some subset

Z0 of Z, but not for all values of xcZ. In this case, we may say that

the forecaster is conditionally well-calibrated, given that xz 0

Now consider the general multivariate forecasting problem introduced in

this section. Let the partition J be as defined here, and let 7 denote

a proper subset of Z . Then a forecaster is said to be conditionally well-

calibrated with respect to the partition J , given that xE7 , if the

relation (8.1) is satisfied for j = 1..., k and all xc 00..
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For well-calibrated multivariate forecasters, we can define the concept of

ref inement by means of a multivariate stochastic transformation. Moreover,

this notion of refinement can again be directly linked to sufficiency in the

comparison of experiments with a finite number of outcomes. Finally, the

concept of one forecaster being marginally or conditionally more refined

than another can be developed.

Critical to the multivariate versions of calibration and refinement as

proposed in this section is the orientation of the vector of forecasted

probabilities x . Each component of x refers to a specific outcome.

This methodology should be contrasted with the multivariate approach,

described for example by Lichtenstein, Fischhoff, and Phillips (1977),

in which the forecaster Iselects the single most likely alternative and

states the probability that it is correct.0 Kadane and Lichtenstein (1981)

show that such a loss of orientation leads to the inability to recalibrate

a forecaster's assessments. From the discussion here, it should be clear

that a careful description of calibration and refinement in both the binary

and multivariate settings requires a well-specified set of outcomes, and

probability assessments specifically tied to those outcomes,
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